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Abstract
An amplitude-phase formula for the S matrix using two Milne solutions and the
regular Schrödinger solution is derived. The formula is particularly useful in
the analysis of Regge poles located far out in the complex �-plane, particularly
for discontinuous scattering potentials. Numerical applications for an attractive
square-well potential and an inverse-power potential ∼r−4 are presented.

PACS numbers: 03.65.Ca, 03.65.Sq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this work the scattering matrix for scalar central forces is analysed as a function of complex
angular momentum with a new approach to the amplitude-phase method [1, 2] developed from
the earliest formulations [3] and a more recent one [4]. In particular, formulae for Regge-pole
properties are generalized to account for distant regions of the complex angular momentum
plane.

As seen in the current literature [5–12], serious attempts are made to develop methods
capable of determining Regge-pole positions and residues without detailed knowledge of the
complex properties of the potential and of the topology of so-called Stokes’ and anti-Stokes’
lines. Applications of existing semiclassical methods of the phase-integral type have proven
to give very accurate pole positions and pole residues for the specific potentials considered
[13], see also [14]. The main drawback of these semiclassical methods is the requirement
of detailed knowledge of Stokes’ and anti-Stokes’ lines, complex transition points as well as
connection formulae. It is interesting to note that perhaps the only exact numerical method
[4] that gave superior results for pole positions and residues a decade ago was also exploiting
Stokes’ and anti-Stokes’ lines as well as complex transition points.

The amplitude-phase method [3] effectively uses the solutions of the nonlinear Milne
equation to analyse the solutions of the radial Schrödinger equation. Particular Milne
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solutions are more or less monotonic as functions of the radial variable r, and by using
them the calculations of Schrödinger solutions can be made very accurately. However,
the monotonic properties of Milne solutions seem to relate closely to what is known in
semiclassical approaches as Stokes’ and anti-Stokes’ lines. The Andersson approach in [4]
is fully exploiting the semiclassical techniques of Stokes’ and anti-Stokes’ lines, and uses a
transformed version of the Milne equation, the q-equation, where q = u−2 and u is a Milne
solution. As it stands, Andersson’s formulation is very specific to the complex behaviour of
particular potential models.

The recent amplitude-phase approach in [1, 2] is mainly exploiting certain invariant
relations between Schrödinger solutions and Milne solutions. Positions and residues for the
leading Regge poles could simply be calculated along the real r-axis [2] with this approach.
From this point of view the recent version of the amplitude-phase method is easy to implement.
However, along the real r-axis numerical difficulties will gradually appear for Regge poles
located further away from the real �-axis. The present work is focusing on an improvement of
the recent flexible amplitude-phase method, so that it can be used for more accurate calculations
of Regge poles further out in the complex angular momentum plane without the detailed use
of Stokes’ and anti-Stokes’ lines. Another need for a generalization is the presence of model
potentials having one or several points of discontinuity, for which the amplitude-phase method
becomes inapplicable or seriously limited in applications; see [2]. Furthermore, the amplitude-
phase approach in [1, 2] promises to be generalizable to coupled radial Schrödinger equations
since the Ermakov–Lewis invariants are known in this case [15].

Basically, the weak point regarding the accuracy of the approach in [1, 2] is that both
the Schrödinger solution and the scattering Milne solution cannot be kept non-oscillating for
Regge poles with high quantum numbers. In order to express the S matrix in [1] in terms of
non-oscillating quantities, it generally requires more than one Milne solution. A single Milne
solution is known to be sufficiently smooth in a limited region of the complex r-plane. This
situation can be illustrated on the real r-axis as in figure 1 for a real scattering potential with
two internal wells. In figure 1 there are three classically allowed regions on the real r-axis
corresponding to three semiclassical anti-Stokes’ lines, respectively. In each such region there
is an ideal, sufficiently smooth Milne solution that is useful also in the neighbouring classically
forbidden regions (Stokes’ lines). A detailed understanding of the regions of smoothness in
the complex plane can be achieved in terms of the semiclassical Stokes’ and anti-Stokes’ lines
associated with complex semi-classical turning points, as explained by Andersson [4].

In section 2 the basic S matrix derived in [1] and [2] is discussed. A generalization of
the S matrix formula is derived in section 3, using two particular Milne solutions and valid
in a large region of the complex angular momentum plane. Section 4 deals with formulae
for determining Regge-pole positions and residues. Numerical applications are discussed in
section 5 and conclusions are found in section 6.

2. Basic S matrix

The basic amplitude-phase formula for the S matrix as a function of the complex angular
momentum quantum number � is given by [1]

S� = �+(u�, �)

�−(u�, �)
e2i�(u�,�). (1)

Equation (1) contains three key quantities; a particular Milne solution u� (see below), the two
‘invariants’ �±(u�, �) and a complex phase �(u�, �). The quantities �±(u�, �) are obtained
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Figure 1. Illustration of typical behaviours of Milne solutions in a multi-well potential. The top
subplot shows the scattering potential (solid line) and the energy (dashed line). The remaining
subplots show three particular Milne solutions that are non-oscillatory in one of the three classically
allowed regions of the real r-axis. In the asymptotic region there is a unique solution u1(r) that
is constant in the limit r → +∞. This Milne solution tends to increase towards the first barrier
region and becomes oscillatory in the remaining regions as r → +0. In the outer local well one
can find another Milne solution u2(r) from conditions satisfied by the WKB amplitude there and
not too close to any turning point. u2(r) is numerically useful in an extended region including the
neighbouring barriers. Similarly, one can define a smooth Milne solution in the inner local well
that is useful in an extended region.

from Wronskian relations, satisfied by Schrödinger solutions, which can also be interpreted
as so-called Ermakov–Lewis invariants [16, 17],

�−(u�, �) =
[
� ′

�(rm)u�(rm) − ��(rm)u′
�(rm) − i

��(rm)

u�(rm)

]
eiφ(u�,r0,rm), (2a)

�+(u�, �) =
[
� ′

�(rm)u�(rm) − ��(rm)u′
�(rm) + i

��(rm)

u�(rm)

]
e−iφ(u�,r0,rm), (2b)

with rm being the (matching) point where the invariants are evaluated.
��(r) in (2a) and (2b) is the regular Schrödinger scattering solution, i.e.

d2��(r)

dr2
+

[
2m

h̄2 (E − V (r)) − �(� + 1)

r2

]
��(r) = 0, (3)

where � is the partial-wave quantum number, m is the reduced mass, and V (r) is the scattering
potential. The regular solution ��(r) is assumed to satisfy the boundary conditions

��(0) = 0, (4a)

��(r) ∼ e−i[κ(r)−π�/2] − S� ei[κ(r)−π�/2], r → +∞, (4b)

where κ(r) satisfies the relation
dκ(r)

dr
→ k, r → +∞, (5)
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with

k =
√

2mE

h̄2 . (6)

In (2a) and (2b) there also appears the particular scattering Milne solution satisfying the
Milne equation

d2u�

dr2
+

[
2m

h̄2 (E − V (r)) − �(� + 1)

r2

]
u� = u−3

� . (7)

with the boundary condition

u�(+∞) = k−1/2,
du�(+∞)

dr
= 0. (8)

The invariants in (2a) and (2b) also contain a phase integral

φ(u�, r0, rm) =
∫ rm

r0

dr ′

u2
�(r

′)
, (9)

where r0 is an unspecified reference point, rm is a matching point, and u� is the scattering
Milne solution mentioned above. Finally, this phase integral with a different upper limit also
appears in the overall phase �(u�, �) in (1), given by

�(u�, �) = lim
r→+∞ exp

(
i

[∫ r

r0

u−2
� dr − κ(r)

]
+ iπ�/2

)
. (10)

Note that this phase combines with the phases in the ‘invariants’ in (2a) and (2b) to a total
phase that is independent of the phase reference point r0. Therefore it is convenient to choose
r0 = rm in applications of the basic S-matrix formula (1). In [2] the basic S-matrix formula
was used to derive equations for determining Regge-pole positions and residues on the real
r-axis. A detailed discussion on the optimal choice of rm for numerical purposes can be found
in [2].

As pointed out in the introduction, the main weakness with the S-matrix formula using
a single matching point is that both the Schrödinger solution and the single Milne solution
cannot be kept non-oscillating for multi-well potentials. Particularly, the oscillations in the
Milne solutions should be avoided if possible. A few oscillations in the Schrödinger solution
are less alarming. In the complex angular momentum theory for smooth potentials, one can in
many cases identify a ‘complex local well’ where the Schrödinger solution behaves oscillatory
like in a real local well. This means that Regge poles with high quantum numbers become
difficult to compute using a single matching point.

A typical such two-turning-point situation that generates a Regge pole is illustrated in
figure 2. Most of the fundamental quantal interference occurs along the anti-Stokes’ lines
that almost connect the turning points of the complex well. It therefore becomes increasingly
difficult to obtain the relevant information of the Milne solution and the Schrödinger solution
on the real r-axis if the complex well is located far from the real r-axis.

To add further flexibility to the method a second matching point is introduced in the
subsequent section.

3. The S matrix expressed in terms of two Milne solutions

In this section a second Milne solution v� is introduced, which, as it turns out, will modify the
invariants �±(u�, �) in the basic S-matrix formula (1).

It is well known in the amplitude-phase theory that each Milne solution u� and v� defines
a pair of particular (fundamental) solutions of the Schrödinger equation written as
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Figure 2. Illustration of a complex well defined by two complex turning points (open circles)
and an anti-Stokes’ line joining them. Quantal interference in the complex well may result in the
formation of a Regge state with purely outgoing travelling waves ‘leaking’ out to infinity r → +∞.
A typical matching point on the real axis (solid circle) is indicated, where �(u�,�) in the Regge-pole
condition is to be evaluated.

F±(u�, r0, r) = u�(r) e±iφ(u�,r0,r), φ(u�, r0, r) =
∫ r

r0

dr ′

u2
�(r

′)
, (11a)

F±(v�, r0, r) = v�(r) e±iφ(v�,r0,r), φ(v�, r0, r) =
∫ r

r0

dr ′

v2
� (r

′)
, (11b)

respectively. The amplitude-phase solutions of the Schrödinger equation F +(u�, r0, r) and
F−(u�, r0, r) in [1] that are used to derive the basic S matrix in (1) can be expressed as a linear
combination of the ‘intermediate’ solutions F +(v�, r0, r) and F−(v�, r0, r), i.e.

F +(u�, r0, r) = M11F
+(v�, r0, r) + M21F

−(v�, r0, r),
(12)

F−(u�, r0, r) = M12F
+(v�, r0, r) + M22F

−(v�, r0, r),

where it is assumed that v� is more nicely behaved than u� in some important ‘intermediate’
region of the complex r-plane.

The relation between both pairs of solutions is determined next. Let the reference point
r0 be identical to the matching point for the amplitude-phase solutions (11a) and (11b), i.e.
r = r0. The four explicit matching equations are given by

u�(r0) = M11v�(r0) + M21v�(r0),

u�(r0) = M12v�(r0) + M22v�(r0),
(13)

u′
�(r0) + iu−1

� (r0) = M11
(
v′

�(r0) + iv−1
� (r0)

)
+ M21

(
v′

�(r0) − iv−1
� (r0)

)
,

u′
�(r0) − iu−1

� (r0) = M12
(
v′

�(r0) + iv−1
� (r0)

)
+ M22

(
v′

�(r0) − iv−1
� (r0)

)
,

where Mij can be solved as elements in the matrix

M =
(

1
2 (−iP + Q + Q−1) 1

2 (−iP + Q − Q−1)

1
2 (iP + Q − Q−1) 1

2 (iP + Q + Q−1)

)
, (14)

with

Q = u�(r0)/v�(r0), P = v�(r0)u
′
�(r0) − v′

�(r0)u�(r0). (15)

The linear relation (12) is now determined with the coefficients satisfying

det M = 1. (16)
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To proceed, the basic invariants �∓(u�, �) can be expressed in terms of the new pair of
solutions (11b) using (12) together with the linearity of Wronskian determinants. One obtains

�−(u�, �) = M11�−(v�, �) + M21�+(v�, �), (17a)

�+(u�, �) = M12�−(v�, �) + M22�+(v�, �), (17b)

where

�−(v�, �) =
[
� ′

�(rm)v�(rm) − ��(rm)v′
�(rm) − i

��(rm)

v�(r)

]
eiφ(v�,r0,rm), (18a)

�+(v�, �) =
[
� ′

�(rm)v�(rm) − ��(rm)v′
�(rm) + i

��(rm)

v�(rm)

]
e−iφ(v�,r0,rm). (18b)

Finally, the S matrix (1) can be expressed in terms of two Milne solutions and a regular
Schrödinger solution as

S� = M12�−(v�, �) + M22�+(v�, �)

M11�−(v�, �) + M21�+(v�, �)
e2i�(u�,�). (19)

Note that the asymptotic phase �(u�, �) in (19) is still expressed in terms of the ‘scattering
Milne solution’ u�, whilst the original quantities �±(u�, �) are instead given in terms of the
‘intermediate Milne solution’ v�.

The new S-matrix formula (19) is valid and accurate for values of � in a large region of the
complex �-plane including the real �-axis. If the Schrödinger solution and the Milne solutions
are real on the real r-axis for real values of �, it is clear that �∗

±(v�, �) = �∓(v�, �),M
∗
11 = M22

and M∗
21 = M12, so that (19) in this case be written in a complex unitary way.

4. Determination of Regge-pole positions and residues

In the present section the basic Regge-pole formulae are modified with the use of the
‘intermediate’ Milne solution v�.

The basic Regge-pole condition from (1) is given by

�−(u�, �n) = 0. (20)

In the neighbourhood of a pole �n the expansion of �−(u�, �) is

�−(u�, �) ≈ ∂�−(u�n
, �n)

∂�
(� − �n), (21)

so that the expression for the residue takes the form

ρn = Res�=�n
S� = �+(u�n

, �n)

∂�−(u�n
, �n)/∂�

e2i�(u�,�). (22)

The basic formulae above were discussed in [2].
The two-Milne-function condition for Regge poles becomes(

�−
(
u�n

, �n

) = )
M11�−

(
v�n

, �n

)
+ M21�+

(
v�n

, �n

) = 0, (23)

where v� and �� are considered to be the main important functions, whereas u� will appear
in the ‘coefficients’ Mij . From this condition alone one has the relation between �+

(
v�n

, �n

)
and �−

(
v�n

, �n

)
given by

�+
(
v�n

, �n

) = −M11�−
(
v�n

, �n

)
M21

. (24)
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Hence, the numerators in (1) and (19) reduce at the poles to

�+
(
u�n

, �n

) = (−M21M12 + M22M11)
1

M11
�+

(
v�n

, �n

)
, (25)

which according to (16) simplifies to

�+
(
u�n

, �n

) = 1

M11
�+

(
v�n

, �n

)
. (26)

The basic residue formula (22) can thus be expressed, with the new relations (23) and (26), as

ρn =
{

�+(v�, �)

M11∂ [M11�−(v�, �) + M21�+(v�, �)] /∂�

}
�=�n

e2i�(u�n ,�n). (27)

A more detailed Regge-pole condition is obtained if the quantities �±(v�, �) are written
as

�±(v�, �) = a± e±iγ , (28)

with

a± = v�(rm)� ′
�(rm) − v′

�(rm)��(rm) ± i
��(rm)

v�(rm)
, (29a)

and

γ = φ(v�, rm, r0). (29b)

According to (29b) the integration of the intermediate Milne solution in γ is formally
performed from the ‘inner’ matching point rm (involving the Schrödinger solution) to the
‘outer’ matching point r0 (involving the scattering Milne solution). The real part of γ should
in general be positive by this definition.

The S-matrix denominator in (1) and (19) can now be expressed as

�−(u�, �) = M21a+ eiγ

[
1 +

M11a−
M21a+

e−2iγ

]
, (30)

so that at a Regge pole � = �n[
−M11a−

M21a+
e−2iγ

]
�=�n

= 1. (31)

Using (31) when expanding �−(u�, �) near the poles, one gets

�−(u�, �) ≈ (M21a+ eiγ )�=�n

[
M11a−
M21a+

e−2iγ

]
�=�n

{
∂
[

M11a−
M21a+

]
/∂�[

M11a−
M21a+

] − 2i
∂γ

∂�

}
�=�n

(� − �n)

= (M21a+ eiγ )�=�n

{
2i

∂γ

∂�
− ∂

[
M11a−
M21a+

]
/∂�[

M11a−
M21a+

]
}

�=�n

(� − �n). (32)

With the use of (28) the residue formula (27) can be written as

ρn =
{
M11M21

[
2i

∂γ

∂�
+

∂

∂�
ln

(
M21a+

M11a−

)]}−1

�=�n

e2i�(u�n ,�n). (33)

Note that the Regge-pole condition (31) may also be put in the form of a semiclassical-type
quantization condition

γ =
[
n + 1 +

1

2iπ
ln

(
−M11a−

M21a+

)]
π, n = 0, 1, 2, . . . . (34)



7370 K-E Thylwe

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Re r

Im
 r

n = 7

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Re r

Im
 r

n = 0

Figure 3. Illustration of the semiclassical transition points and their anti-Stokes’ lines for two
Regge poles, �0 = 4.8289 + i6.0137 and �7 = 5.9079 + i13.3783, corresponding to a repulsive
r−4-potential. For the leading pole �0 the two turning points lie close to the ( �-dependent)
minimum (small square) of a complex well in which the Schrödinger wavefunction describes the
lowest quasi-bound state. The two matching points (also small squares) are here chosen outside
the complex well. A similar situation is given for the Regge pole �7 in the right subplot. In this
case the Schrödinger wavefunction has seven almost exact nodes between the turning points, but
the ‘intermediate’ Milne solution is non-oscillating there. Note that the local minimum (small
square) of the complex well does not lie exactly on the anti-Stokes’ line joining the turning points.

The non-negative integer n enters in (34) as a (quasi-vibrational) quantum number, i.e. the
pole number that defines a string of poles in the complex �-plane. The ground state (leading
Regge pole) n = 0 corresponds to the smallest possible value of γ with a positive real part
and that satisfies the condition (31). It is known that the particular Milne solution satisfying

v�(r) ≈
[

2m

h̄2 (E − V (r)) − �(� + 1)

r2

]−1/4

, (35)

near the ‘bottom’ of the complex well will stay well behaved and monotonically increasing as
r tends to either of the turning points of the complex well and beyond (see [18, 19]).

Formula (34) is most effective if the matching points are chosen so that the ‘coefficients’
Mij and a± become almost like constants. This can be realized assuming that v� becomes
large beyond the complex-well turning points; the scattering Milne solution remains almost
constant in the outer (upper right) region and the Schrödinger solution is kept small in the
inner (lower left) region away from the complex well. By choosing the matching points r0

and rm outside the complex well, as indicated by small squares in figure 3, it is then possible
to realize the following limiting case

M21 ≈ −M11 ≈ 1

2
(iP − Q−1), Q = u�n

(r0)

v�n
(r0)

� 1, (36)

a− ≈ a+ ≈ v�(rm)� ′
�(rm) − v′

�(rm)��(rm),
��(rm)

v�(rm)
� 1, (37)
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so that (34) can be approximated by

γ ≈ (n + 1)π,
��(rm)

v�(rm)
� 1,

u�n
(r0)

v�n
(r0)

� 1. (38)

This Regge-pole condition (38) appears to be identical to the one used by Korsch et al [19]
for localizing complex energy poles. Here γ is an integral of an exact quantal momentum
function v−2

� where the integration extends from deep inside the classically forbidden region
on the side of the complex well close to the origin, across the well, and far into the classically
forbidden region on the other side of the complex well.

5. Numerical applications

Two cases of Regge states are considered in the present section: those of a repulsive inverse-
power potential ∼r−4, and those of a discontinuous square-well potential. All calculations
in this section are performed with units such that 2m/h̄2 = 1. A numerical tolerance of
3 × 10−14 is used in the calculations and convergence of the Regge-pole condition is accepted
when corrections in � are smaller than 3 × 10−12.

The purpose of this section is to demonstrate that the amplitude-phase method is a powerful
numerical tool also with a minimum knowledge of the complex behaviour of the potentials.
However, anti-Stokes’ lines are calculated for an illustrative purpose and to add a deeper
understanding from a semiclassical point of view.

5.1. V (r) = α2r−4

Handy et al [6, 7] studied Regge-pole positions and residues for this potential with

α2 = 2, E = 400. (39)

The so-called eigenvalue moment method [6, 7] produces highly accurate results for both
positions and residues of the Regge poles.

Two analytic results are useful in the Newton iteration procedure for finding the Regge-
pole positions. The potential-free turning point

t0 = [�(� + 1)]1/2

k
(40)

is a valuable reference point for trying out one of the matching points in the complex r-plane.
Another point of interest in the complex plane is a possible minimum in the complex well. A
quick calculation gives

d

dr

(
α2

r4
+

�(� + 1)

r2

)
= 0 ⇒ (r =)tm = i

(
2α2

�(� + 1)

)1/2

. (41)

The complex points t0 and tm define a line that should be reasonably close to the complex well.
For the leading pole, �0, it is expected that the turning points of the complex well lie close to
the minimum tm. A rough estimate �� of �0 can be obtained by solving t0 = tm, which gives
�� ≈ k1/2(2α2)1/4 eiπ/4. A more sophisticated semiclassical estimate [20] gives

�n + 1/2 ≈ 21/2 eiπ/4χ + 21/2(n + 1/2)i + 21/2(n + 1/2)2 e−iπ/4χ−1,

∣∣∣∣n + 1/2

χ

∣∣∣∣ � 1,

(42)

where n = 0, 1, 2, . . . is the pole number, and

χ = k1/2(α2)1/4. (43)
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Table 1. Positions and residues of the Regge poles corresponding to the repulsive potential
V (r) = α2r−4 and energy E = 400. The marked digits (underlined) differ from those in a
corresponding table in [6] that comprises the first eight poles (n = 0, 1, . . . , 7). Note that the
residues given in the table in [6] have been multiplied by the imaginary unit before the comparison
is made.

n �n ρn

0 4.828 946 803 678 + 6.013 713 550 104i 0.031 274 035 06 + 0.102 004 304 24i
1 4.925 902 544 668 + 7.295 011 652 620i 0.110 588 013 52 + 0.109 396 476 55i
2 5.067 366 792 145 + 8.468 178 243 369i 0.149 632 536 76 + 0.079 705 047 72i
3 5.228 355 421 678 + 9.557 720 099 833i 0.162 037 454 29 + 0.051 363 433 22i
4 5.397 261 497 165 + 10.582 006 552 146i 0.162 896 173 78 + 0.030 661 151 41i
5 5.568 460 400 978 + 11.554 236 518 880i 0.159 363 616 20 + 0.016 371 580 35i
6 5.739 137 652 223 + 12.483 976 816 193i 0.154 421 441 55 + 0.006 550 629 99i
7 5.907 870 381 072 + 13.378 312 553 437i 0.149 267 497 98− 0.000 276 077 37i
8 6.073 956 213 732 + 14.242 616 101 411i 0.144 360 904 95 − 0.005 094 574 58i
9 6.237 078 466 712 + 15.081 053 103 543i 0.139 854 640 55 − 0.008 547 120 46i

10 6.397 131 350 226 + 15.896 919 297 825i 0.135 775 674 30 − 0.011 053 689 42i

Figure 3 shows the semiclassical turning points and the associated anti-Stokes’ lines
forming a ‘complex well’ in the first quadrant of the �-plane. As the pole number increases,
the well becomes wider. Three more points are shown in the figure: the inner matching point
rm, the outer matching point r0 and the complex minimum t0, which lies between the turning
points and close to the anti-Stokes’ line joining the turning points. Not shown in the figure is
the ‘potential-free’ turning point t0, which turns out to be a good approximation of the true
upper turning point.

In the calculations the matching point r0 can be chosen to lie some distance from t0 away
from the minimum tm. The inner matching point rm is chosen to be on the other side of
tm, closer to the real axis and the origin. The Schrödinger equation is integrated from close
to the origin, near the real axis, along a straight line to rm. Then the intermediate Milne
solution is integrated from r = tm back to rm, so that �±(v�, �) is calculated and part of the
phase γ is collected. The initial conditions in this integration are set from (35) at r = tm
where dv�(rm)/dr = 0. To proceed, the inner Milne equation is integrated up to r0 where the
calculation of γ is completed. The scattering Milne solution is finally calculated from some
large distance (Re r → +∞), along a straight line up to r0, where the coefficients M11 and
M21 are determined. The Regge-pole condition is evaluated as well as the �-derivative of this
condition, and a better initial guess is determined. The procedure is repeated until convergence
is found (see table 1).

5.2. V (r) = −V0, 0 < r � R and V (r) = 0, r > R

This potential was discussed in [2] for the case R = 1, E = 100, V0 = 200. The basic
Regge-pole formulae were used on the real r-axis and successfully located the narrow and
broad resonance poles as well as the leading diffraction pole. A theoretically interesting
aspect of this potential is the break up of the pole string into two branches, which makes the
identification of a pole with a unique pole number impossible.

The single matching point used in [2] had to be chosen at the cut-off r = R and the
flexibility of the method was thereby limited. It mainly affected the search for the diffraction
poles far from the real �-axis. With two matching points the numerical situation is improved,
so that further diffraction poles can be located.
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Figure 4. Illustration of the discontinuous complex wells forming diffraction Regge states.
A vertical cut is introduced in the complex r-plane from the real axis at r = R.

In this model the turning points are easily calculated. For the exterior region it is given by

t0 =
[
h̄2�(� + 1)

2mE

]1/2

, t0 > R. (44)

Similarly, for the interior region

t1 =
[

h̄2�(� + 1)

2m(E + V0)

]1/2

, t1 � R. (45)

The minimum of the ‘complex well’ is simply tm = R but the derivative of the potential is not
zero if � 
= 0.

The diffraction Regge states are expected not to penetrate far into the well, so an inner
matching point is chosen at the cut-off, rm = R. An outer matching point is chosen on the
other side of the outer turning point, |r0| > |t0|. The integration of the ‘inner’ Milne solution
is performed directly from the inner matching point to the outer one. Initial values are taken
from (35) with V (rm) = 0, and recalling that the derivative is different from zero.

The ‘complex well’ forming the Regge states is distorted by the discontinuity (see
figure 4). When the Regge-pole condition is written in the form (34), one can identify the pole
number n. It turns out that the leading diffraction Regge state can be associated from (34) with
a ‘diffraction pole number’ n = nd = 0, but the correction term 1

2iπ ln
(− M11a−

M21a+

) ≈ 1
2iπ ln

(
a−
a+

)
has a significant contribution. This correction term does not change very much for the first
ten diffraction poles, so there is a significant phase contribution in the Regge-pole condition
coming from the wavefunction inside the physical potential well. The diffraction pole number
nd thus only measures the exterior phase range of the wavefunction in the complex well.

The first ten Regge-pole positions and residues are collected in table 2. The accuracy
of the Regge-pole positions has been estimated by the use of an exact analytic S-matrix
formula [21]

S� = −H
(2)
�+/2(β)

H
(1)
�+/2(β)

{
ln′ H(2)

�+/2(β) − N ln′ J�+/2(α)

ln′ H(1)
�+/2(β) − N ln′ J�+/2(α)

}
, (46)
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Table 2. Positions and residues of the Regge poles corresponding to the square-well potential with
depth V0 = 200, range R = 1 and energy E = 100. The diffraction quantum number nd refers to
the exterior part of the complex well between the cut-off radius and the exterior turning point t0.

nd �nd
ρnd

0 11.333 393 287 195 + 4.270 620 759 476i 0.496 873 978 − 0.249 479 259i
1 12.669 435 728 597 + 6.957 733 153 068i 0.379 681 354 − 0.188 248 823i
2 13.765 512 772 354 + 9.172 616 815 414i 0.330 577 906 − 0.163 100 991i
3 14.738 345 065 276 + 11.153 023 759 918i 0.301 900 287 − 0.147 563 957i
4 15.629 045 882 295 + 12.985 159 188 194i 0.282 365 037 − 0.136 498 088i
5 16.458 995 199 668 + 14.711 739 815 656i 0.267 865 181 − 0.128 021 820i
6 17.241 313 808 844 + 16.357 763 669 615i 0.256 500 990 − 0.121 228 049i
7 17.984 839 238 296 + 17.939 432 712 660i 0.247 253 635 − 0.115 608 976i
8 18.695 897 676 687 + 19.467 998 658 989i 0.239 519 234 − 0.110 852 102i
9 19.379 219 050 331 + 20.951 674 770 197i 0.232 913 091 − 0.106 751 976i

where H
(1,2)
�+/2 (β) are the cylindrical Hankel functions and J�+/2(α) is the cylindrical Bessel

function. ln′ denotes the logarithmic derivative with respect to the arguments α =√
2m

h̄2 (E + V0)R and β =
√

2mE

h̄2 R, and N = α/β. By inserting the amplitude-phase results
for the pole positions in the denominator of the embraced factor in (46), and numerically
obtaining an approximate �-derivative for this denominator, the pole positions were found to
be accurate with 11–12 significant decimals.

The accuracy of the residues in table 2 is more difficult to estimate. The phase �(u�, �)

in the residue formula needs to be calculated from a large distance r > 104 up to the outer
matching point r0.

6. Conclusions and discussions

It has been shown that the basic formula of the S matrix, derived from Ermakov–Lewis
invariants, can be generalized to include two Milne solutions. The applicability of this
amplitude-phase method is thereby generalized to be more flexible so that it can handle more
distant Regge poles with large pole numbers. No particular knowledge of the Stokes’ and
anti-Stokes’ lines is required for using this method, but such considerations are no doubt very
valuable for accurate numerical computations.
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